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Most current methods for the engineering of photonic crystal �PhC� cavities rely on cumbersome, compu-
tationally demanding trial-and-error procedures. In the present work, we take a different approach to the
problem of cavity design, by seeking to establish a direct, semianalytic relationship between the target elec-
tromagnetic field distribution and the dielectric constant of the PhC structure supporting it. We find that such
a relationship can be derived by expanding the modes of LN-type cavities as a linear combination of the
one-dimensional �1D� Bloch eigenmodes of a PhC W1 waveguide. Thanks to this expansion, we can also
ascertain the presence of a well-defined 1D character in the modes of relatively short cavities �e.g., L9–15�, thus
confirming recent theoretical predictions and experimental findings. Finally, we test our method through the
successful design of a cavity supporting a mode with Gaussian envelope function and ultralow radiative losses
�quality factor of 17.5�106�.
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I. INTRODUCTION

In semiconductor physics, the study of how the
incorporation—either deliberate or unintentional—of defects
and impurities affects the properties of a host material repre-
sents a subject of ever-growing importance. In some in-
stances, the presence of these defects represents an unwanted
nuisance; this is the case, for example, of surface recombi-
nation centers in semiconductor solar cells, lasers, and
detectors.1 On the other hand, the continuous development of
epitaxial growth techniques has given rise to the possibility
of incorporating controlled percentages of specific impurities
in a semiconducting crystal, thus providing the freedom to
tailor the optical, electrical, and structural properties of a
grown sample on a monolayer-by-monolayer basis.2 As a
matter of fact, this great flexibility is probably the main rea-
son behind the pervasive presence of semiconductors in
modern-day electronic components.

Even though material systems based on the incorporation
of deep impurities �such as nitrogen in III-V materials3� have
recently shown some promise,4–8 defects selected to alter the
properties of semiconductors generally fall into the category
of shallow impurities �e.g., donors and acceptors or conven-
tional isoelectronic impurities�. Probably, the property that
best defines this class of impurities is represented by the
relatively large spatial extension of their carrier wave func-
tions �typically, many primitive cells of the crystal�. Being
highly delocalized in real space, these wave functions can be
reconstructed from a few Bloch functions of the host crystal,
having wave vector k� nearly equal to that of the nearest band
extremum.9 This, in turn, allows for several simplifications,
which ultimately result in the possibility of formulating
semianalytical models that describe and predict the effects of
the incorporation of shallow impurities in the host material.
In the absence of such models �as, for example, in the case of
most deep impurities�, any attempt at adjusting the properties
of semiconductors through the deliberate introduction of de-
fects would have to rely on lengthy trial-and-error proce-
dures.

Currently, such a trial-and-error approach dominates the
practice of defect engineering in photonic crystals �PhCs�.
The possibility that a disruption of the periodicity of the
photonic lattice might confine light,10 much in the same way
as defects and impurities trap carriers in a semiconducting
crystal, was suggested immediately after the first proposal of
PhCs.11 In the last decade, a great number of experimental
demonstrations of this concept have appeared in the litera-
ture, en route to the realization of PhC cavities12 and
waveguides,13 PhC microcavity lasers,14,15 and strongly
coupled quantum dot �QD�-PhC cavity systems.16–18 A vast
majority of these experiments is based on PhC membrane LN
cavities,19 which are obtained by simply removing a line of
N air holes from a two-dimensional �2D� PhC hexagonal
lattice �see Fig. 1�a��, embedded in a thin semiconductor slab
�or membrane�. The L3 cavity, in particular, has enjoyed a
widespread diffusion,15–17,20 because of its capability to con-
fine light in very small volumes �below one cubic wave-
length� while also attaining high quality factors �Q�.

In recent years, extensive efforts have been directed at the
minimization of radiative losses in optimized L3 cavities,21,22

in an attempt to achieve Q factors that would allow for the
observation of pronounced cavity quantum electrodynamics
effects. Through a fine tuning of the arrangement of the holes
near the cavity terminations, theoretical Q factors in excess
of 105 could be obtained;22 however, L3-like cavities have
proven rather difficult to optimize beyond this point, in spite
of their conceptual simplicity and of a relative ease of fabri-
cation. Generally speaking, it is relatively straightforward to
identify two main origins for this problem. From a physical
point of view, an intrinsic justification for the presence of
significant radiative losses in short LN-like cavities resides in
the excessively abrupt variation in the mode’s spatial distri-
bution in proximity of the cavity terminations, as first sug-
gested by Akahane et al. in Ref. 21. Eventually, this consid-
eration led to the development of a new class of line-defect
PhC cavities—whose dielectric constant distribution differs
significantly from that of LN cavities—in which light is “con-
fined gently in order to be confined strongly”21 and radiative
losses are greatly suppressed �theoretical Q factors in excess
of 107�.23 From a more practical standpoint, however, a
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second important reason for the difficulty of optimizing the
performance of PhC cavities �particularly with respect to
their radiative losses� is surely represented by the current
lack of simple analytical �or even semianalytical� models
linking the geometry of a cavity to the properties of its
optical modes.

In the present paper, we show that such a model can be
defined for LN �and LN-like� cavities as soon as N�3, i.e., as
soon as their confined optical modes can be expanded in
terms of the one-dimensional �1D� Bloch eigenstates of a
PhC W1 waveguide �see Fig. 1�b��. Coupled to their some-
what “softer” confinement along the main cavity axis, the
possibility to write the localized �0D� modes of relatively
long �N�3� LN cavities in terms of a small number of
extended �1D� W1-waveguide states suggests a parallel be-
tween these PhC defects and shallow impurities in semicon-
ductors. Similarly to the case of shallow impurities, indeed,
the expansion in waveguide eigenmodes can be used to ex-
tract important information on the fundamental properties of
LN cavity modes. More importantly, however, such an expan-
sion can be used to find a direct relationship between the
dielectric constant of a cavity and the spatial distribution of
its modes, which can in turn be applied to the design
of cavities supporting modes with arbitrarily shaped field
distributions. The potentially high impact of this method
on the field of PhC-cavity engineering is demonstrated in
the final part of this work, where we describe the steps
necessary to generate a cavity whose fundamental mode is
characterized by a Gaussian envelope function23 and by
ultralow radiative losses �as attested to by a Q factor of
17.5�106�.

II. EXPANSION OF PhC CAVITY MODES IN WAVEGUIDE
EIGENSTATES

The first step toward the formulation of a method to de-
sign PhC cavities having the desired mode distribution is to
find the correct way to expand the mth mode of a generic LN

cavity, E� N
m�x ,y�, in terms of the 1D Bloch eigenmodes of a

PhC W1 structure with the same r /a and membrane thick-
ness. In general terms, such an expansion should take the
form

E� N
m�x,y� =

1
�V

�
n

�
kx

0,2�/a

cnkx

m,NE� nkx�x,y�eikxx. �1�

Here, V is the domain volume, the waveguides modes are
written as E� nkx�x ,y�eikxx �see Fig. 1�d� for some examples�,
and the sum in kx is centered on the minimum of the W1
band of interest �kx=� /a�. The modes of the PhC wave-
guide, as well as those of the LN cavities, are obtained here
from 2D finite-difference �2DFD� computations,24 in the
effective-index approximation25 and with periodic boundary
conditions �in the case of the waveguide�. The effective in-
dex used in the computations �neff=3.223� is determined by
matching the frequency of the fundamental mode of a GaAs-
based L3 test cavity computed in 2D to the result of a full
three-dimensional �3D� finite-difference time-domain
�FDTD� computation,26 performed on the same cavity em-
bedded in a GaAs slab with thickness t=265 nm �compat-
ible with the integration of site-controlled pyramidal QDs
�Refs. 20 and 27� and V-groove quantum wires28�. The
GaAs refractive index at T=10 K and �0�870 nm
�nGaAs�3.518� �Ref. 29� is used in the 3D FDTD calcula-
tions. By using neff in the 2D model, it is possible to account
for the finite extension of the real �i.e., inherently 3D� cavity
modes in the out-of-plane �z� direction. In the limited range
of frequencies considered here ��0.22c /a–0.27c /a, roughly
corresponding to the extension of the guided PhC W1 bands�
neff is found to be nearly constant, and independent of the
specific PhC cavity geometry; as a consequence, the same
index value can be used throughout the calculations for both
the W1 waveguide and the LN cavities.25 The near-infrared
dispersion of nGaAs is taken into account a posteriori, by
properly correcting the eigenfrequencies obtained from the
2D model.

It should be noted that the first sum in Eq. �1� extends
over all the n�→�� bands of the PhC dispersion �see Fig.
1�c��. For specific modes of the cavity, however, the number
of bands over which the sum is performed can be drastically
reduced, by taking into account the symmetry, the spatial
localization and the energy position of the mode with respect
to the band diagram of the waveguide �displayed in Fig.
1�c��. For calculating the LN-cavity modes, in particular, the
sum in Eq. �1� can be limited to the bands that are actually
confined in the W1 waveguide, with the additional constraint
that the spatial symmetry of the band states must match that
of the cavity mode under scrutiny. This means that if we
focus our attention on the cavity modes that are odd with
respect to reflection about the x-z plane �for LN cavities the
fundamental mode belongs to this particular class�, we only

FIG. 1. �Color online� �a� Example of PhC membrane LN cavity
�N=11�. The PhC parameters used in the computation of the cavity
modes �a=198 nm, r /a=0.26� are indicated. The same param-
eters were used for the PhC W1 waveguide shown in �b�. �c� Wave-
guide dispersion as obtained from 2DFD computations. The bands
that are spatially confined in the waveguide are shown in gray �red�
�odd modes� and black �blue� �even modes�. �d� Real part of the Ey

component of four eigenmodes belonging to the odd waveguide
band shown in �c�. The modes were randomly selected around the
minimum of the band, in kx=� /a. The corresponding kx values are
indicated.

FELICI et al. PHYSICAL REVIEW B 82, 115118 �2010�

115118-2



have to take into account the lowest guided band �see Fig.
1�c��. Hence, Eq. �1� reduces to

E� N
m�x,y� =

1
�V

�
kx

0,2�/a

cwkx

m,NE� wkx�x,y�eikxx, �2�

where the band index n was dropped in favor of the constant
label w.

In order to be able to use Eq. �2� to actually reconstruct
the LN-cavity modes, an explicit expression for the cwkx

m,N co-
efficients must be found. To this end, we rewrite Eq. �2� in
the limit V→�,

E� N
m�x,y� →

V→� 1
�2�

	
0

2�/a

cwkx

m,NE� wkx�x,y�eikxxdkx. �3�

Equation �3� is a vectorial expression, valid for any compo-
nent of the electric field; for Ey

m,N�x ,y�, we have

Ey
m,N�x,y� =

1
�2�

	
0

2�/a

cwkx

m,NEy
wkx�x,y�eikxxdkx. �4�

If both sides of Eq. �4� are integrated over y, we obtain

Ey
m,N�x� =

1
�2�

	
0

2�/a

cwkx

m,NEy
wkx�x�eikxxdkx �5�

with

Ey
m,N�x� = 	

−�

�

Ey
m,N�x,y�dy �6�

and

Ey
wkx�x� = 	

−�

�

Ey
wkx�x,y�dy . �7�

The following step is to express Ey
m,N�x� in terms of its Fou-

rier transform �FT� so that Eq. �5� becomes

1
�2�

	
−�

�


FT�Ey
m,N�x��
kx

eikxxdkx

=
1

�2�
	

0

2�/a

cwkx

m,NEy
wkx�x�eikxxdkx. �8�

Before proceeding further, we must note that the functions
Ey

wkx�x�eikxx are solutions to the following one-dimensional
wave equation:

−
�2�Ey

wkx�x�eikxx�
�x2 = �wkx

c
�2

�w
1D�x�Ey

wkx�x�eikxx, �9�

where �wkx
is the frequency of the odd W1 band in kx �see

Fig. 1�c��, and �w
1D�x� is an effective 1D dielectric constant

for the waveguide. �w
1D�x� can be evaluated from the two-

dimensional dielectric constant, �w�x ,y�, by properly ma-
nipulating the explicit expression of the 2D wave equation,

�
�2�Ey

wkxeikxx�
�y � x

−
�2�Ex

wkxeikxx�
�y2 = �wkx

c
�2

�w · Ex
wkxeikxx

�2�Ex
wkxeikxx�

�x � y
−

�2�Ey
wkxeikxx�
�x2 = �wkx

c
�2

�w · Ey
wkxeikxx� .

�10�

�Here, we temporarily dropped the �x ,y� dependence for
Ei

wkx�x ,y� and for �w�x ,y�.�
If both sides of the bottommost equation contained in Eq.

�10� are integrated over y, we get

−
�2�Ey

wkx�x�eikxx�
�x2

= �wkx

c
�2�	

−�

�

�w�x,y� · Ey
wkx�x,y�dy�eikxx. �11�

By comparing Eqs. �9� and �11�, we easily obtain

�w
1D�x� =

	
−�

�

�w�x,y� · Ey
wkx�x,y�dy

	
−�

�

Ey
wkx�x,y�dy�=Ey

wkx�x��
. �12�

Such an expression for �w
1D�x� is actually quite reasonable,

since it means that the effective 1D dielectric constant we
were looking for is given by the integral over y of the two-
dimensional �w�x ,y�, weighted by its overlap with the peri-
odic part of the waveguide modes. Now that we have �w

1D�x�,
we can use the orthonormality condition for solutions of Eq.
�9�,30

	
−�

�

��w
1D�x��1/2Ey

wkx�x� · ���w
1D�x��1/2Ey

wkx��x���ei�kx−kx��xdx

= 2���kx − kx�� , �13�

to obtain the cwkx

m,N coefficients. To this end, we multiply both

sides of Eq. �8� by 1
�2�

��w
1D�x��1/2 · ���w

1D�x��1/2 · �Ey
wkx��x�eikx�x���

and we integrate over x, getting

1

2�
	

−�

� 	
−�

�


FT�Ey
m,N�x��
kx

· ��w
1D�x��1/2

· ���w
1D�x��1/2 · �Ey

wkx��x����ei�kx−kx��xdkxdx = cwkx�
m,N.

�14�

Now, since �Wy
wkx��x���= ��w

1D�x��1/2 · ���w
1D�x��1/2 · �Ey

wkx��x����

is a periodic function in a, we can write

�Wy
wkx��x��� = �

G

�WG
wkx��� · e−iG·x. �15�

G �=	 �2� /a�m, with m=0,1 , . . . ,�� is the 1D reciprocal

lattice vector, and for WG
wkx� the following relationship holds

true:
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�WG
wkx��� =

1

a
	

−a/2

a/2

�Wy
wkx��x���eiG·xdx . �16�

Substituting Eq. �15� in Eq. �14�, we have

1

2�
�
G
	

−�

� 	
−�

�


FT�Ey
m,N�x��
kx

· �WG
wkx���ei�kx−�kx�+G��xdkxdx = cwkx�

m,N, �17�

that is,

�
G
	

−�

�


FT�Ey
m,N�x��
kx

· �WG
wkx�����kx − �kx� + G��dkx = cwkx�

m,N.

�18�

Finally, we obtain

cwkx

m,N = �
G


FT�Ey
m,N�x��
�kx+G� · �WG

wkx�� �19�

�where we have replaced the index kx� with kx�.
The expression of the cwkx

m,N coefficients provided in Eq.
�19� is composed of two terms, which must be evaluated
separately. Namely, these two terms are �i� the 1D Fourier
transform of the LN cavity mode,
FT�Ey

m,N�x��
kx+G, and �ii�
the WG

wkx term, which depends solely on the dielectric con-
stant and eigenmodes of the waveguide. The absolute value
of the 1D FT of the fundamental mode �M0� of the L5 cavity,

FT�Ey

0,5�x��
kx+G, is shown in Fig. 2�a� as an example of �i�. It
is interesting to note that more than 98% of the 1D FT of this
mode is comprised within the interval kx� �− 4�

a , 4�
a �, and

that similar percentages characterize all the modes studied in
the present work. This observation, coupled to the fact that
the values assumed by WG

wkx become negligible for 
G
� 8�
a

�see Fig. 2�b��, allows us to safely truncate the sum in Eq.
�19� at G= 	

8�
a when trying to evaluate the cwkx

m,N coefficients.

Since these coefficients provide the distribution of E� N
m�x ,y�

in the space of 1D Bloch modes of the PhC waveguide,
following their evolution with increasing N can help our un-
derstanding of the nature of light confinement in LN cavities.
As shown in Fig. 2�c�, indeed, the cwkx

m,N coefficients progres-
sively localize around specific points of kx space as the
length of the cavity is increased, finally reconstructing the
waveguide dispersion for N→�. The frequency of the fun-
damental cavity mode, in particular, quickly approaches that
of the minimum of the waveguide dispersion with increasing
N, as a consequence of the reduced mode localization along
the x axis �that is, the main axis of the cavity�. The effects of
this 0D→1D transition, which was studied both theoreti-
cally and experimentally in Ref. 31, are already apparent for
relatively small values of N �e.g., N=9–15 in Fig. 2�c��. The
fact that even PhC cavities formed by 10–20 missing holes
possess a well-defined “waveguidelike” character is at the
origin of a recent proposal to use these cavities—coupled to
single site-controlled QDs �Refs. 20 and 27�–as efficient “on
chip” single photon guns.32 The early onset of delocalization
along the x axis for the optical modes of the LN cavities is
also confirmed by the excellent quality of the mode recon-

struction obtained using Eqs. �2� and �19�. In the following
section, we will indeed show that such reconstruction be-
comes extremely accurate as soon as N�3. As, for example,
in the case of donors in semiconductors, the possibility to
reconstruct a localized state �the cavity mode� as a linear
combination of a reasonably small number of delocalized
functions �the “odd” W1 Bloch eigenfunctions� can be inter-
preted as evidence of the shallow character of the PhC de-
fects under consideration. The capability of writing a semi-
analytical expression for the kx-space distribution of the
modes associated with such “shallow cavities” opens the

FIG. 2. �Color online� �a� Absolute value of
FT�Ey
m,N�x��
kx

for
the fundamental mode �M0� of the L5 cavity �the function is
symmetric with respect to kx=0�. The spatial distribution of the
Ey component of this mode �computed by 2DFD� is shown in
the inset. �b� Absolute value of WG

wkx �see definition in the text�.
The box delimits the range of values of WG

wkx

�G� �−4· 2�
a ,4 · 2�

a �� that were included in the sum in Eq. �19�. �c�
Absolute value of the cwkx

m,N coefficients for the modes of four LN

cavities �N=5,9 ,15,35�, superimposed to the odd waveguide band
�displayed as a continuous line�. The continuum bands of the PhC
are shaded in gray. The color map on the right side of the figure is
used in both panels �b� and �c�. For each value of m and N, the
positioning of the cwkx

m,N coefficients along the frequency axis was
determined by the corresponding mode frequency.
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way to the direct engineering of the cavity properties. This
intriguing possibility will be discussed in detail in the final
section of the present work.

III. RECONSTRUCTION OF CAVITY MODES

In principle, the inclusion in Eq. �2� of the cwkx

m,N coeffi-
cients given in Eq. �19� �and displayed in Fig. 2�c�� provides
us with the means to reconstruct any mode of an arbitrary LN
cavity, as long as the mode is of the right parity �i.e., it is odd
with respect to reflection about the x-z plane�. In an attempt
to test the limits to the validity of this approach, we applied
Eqs. �2� and �19� to the fundamental mode �M0� of a series
of LN cavities �a selection of the results obtained for
N=3,7 ,11,21,35 is shown in the following�, and compared
the results of the reconstruction with the mode patterns com-
puted by 2DFD. From the data summarized in Fig. 3, it is
apparent that the match between the computed cavity modes
and those obtained using Eqs. �2� and �19� is, in general,
extremely good. Only for the L3 cavity—the smallest struc-
ture studied here—one starts to notice sizeable differences
between the reconstructed mode pattern and the computed
one. Even though a good qualitative agreement is present
even in this case, the reconstructed mode seems to be more
extended than the computed one, suggesting an inherent dif-
ficulty of treating highly localized modes within our formal-
ism. Continuing the parallel between LN cavities and defects
in semiconductors, this observation can be interpreted as evi-
dence of an ongoing “shallow-to-deep defect” transition in
LN cavities with decreasing N. As we will see in the follow-
ing, this transition is strictly connected to the broadening of
the kx-space distribution of the cavity modes taking place for
N→0.

A first, potential hindrance to the reconstruction of highly
localized cavity modes via Eq. �2� is indeed represented by
the fact that the identification of the 1D Bloch modes belong-
ing to the odd waveguide band becomes difficult as soon as
these modes enter into resonance with the upper bands of the
bulk photonic crystal �in gray in Figs. 1 and 2�. For this
reason, in the present work �i.e., for an r /a of 0.26, see Fig.
1� the W1 eigenstates corresponding to kx
k0�=0.4�

a � and to
kx�

2�
a −k0 had to be approximated with E� wk0�x ,y�eikxx and

E� w�−k0��x ,y�e−ikxx, respectively. As long as N is sufficiently
large, however, the cwkx

m,N coefficients associated with these
waveguide modes are very small �see Fig. 2�c��, and this
approximation does not have any sizeable effects on the re-
construction of the cavity modes. When the cavity length is
decreased, on the other hand, the modes become more and
more confined along x, and the cwkx

m,N coefficients progres-
sively “spread out” in kx space. Eventually, the weight of the
approximated waveguide eigenstates becomes no longer neg-
ligible, leading to errors in the mode reconstruction. In addi-
tion, for very short cavities the basic hypothesis that allowed
us to formulate the approach summarized by Eqs. �2� and
�19�—i.e., that the eigenmodes of a PhC waveguide repre-
sent a complete basis for PhC-cavity modes—is no longer
valid. In order to properly reconstruct the modes of such
short cavities—which in many respects can indeed be lik-
ened to deep defects in semiconductors—we should in prin-
ciple go all the way back to Eq. �1�, to include all the PhC
bands in the expansion of the cavity mode. Among other
things, this would require the evaluation and the identifica-
tion of the totality of the PhC states, rendering the recon-
struction procedure extremely cumbersome and, ultimately,
impractical.

As evidenced by the data reported in Fig. 3, however, for
the LN cavities such a shallow-to-deep defect transition does
not occur until N�3. Apart from confirming that a certain
waveguidelike character is acquired by LN cavities as soon as
the cavity length exceeds a few unit cells, these results attest
to the general validity of our approach. In Fig. 4, we display
the results obtained by applying Eqs. �2� and �19� to a selec-
tion of the modes confined in an L35 cavity. As the data
reported in the figure clearly demonstrate, our capability to
correctly reconstruct LN-cavity modes is not limited to the
M0 �Figs. 4�a� and 4�b�� but it also extends to the confined
modes of higher frequency �Figs. 4�c�–4�h��.

IV. CAVITY DESIGN

As we saw in the previous Sections �as well as in Ref.
31�, the capability to expand the modes of an LN cavity in
terms of the Bloch eigenstates of a W1 waveguide can pro-
vide interesting insight into the nature of light confinement in

FIG. 3. �Color online� �Top� Spatial distribution of the Ey component of the fundamental mode �M0� of four LN cavities
�N=3,7 ,11,21�. The upper half shows the modes as obtained from 2D FD computations; in the lower half, the modes reconstructed using
Eqs. �2� and �19� are displayed. �Bottom� Integral along y of the Ey component of the same modes shown in the top panel. The black dots
connected by a black curve refer to the modes obtained from 2DFD computations; the white squares connected by a gray �red� curve to the
modes obtained using Eqs. �2� and �19�.
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PhC defects, in particular with respect to the dimensionality
�0D or 1D� of the photonic wave functions. In the following
paragraphs, we will demonstrate that the formalism devel-
oped in Sec. II can have a second, much more practical,
application: it can be used to design PhC cavities that sup-
port optical modes with predefined properties while also be-
ing compatible with state-of-the-art fabrication techniques.
As a proof of principle for the feasibility of this approach, in
the final part of this section we will discuss the properties of
a PhC cavity engineered to support a mode with Gaussian
envelope function and ultralow radiative losses. In order to

get to this point, however, we have to find a way to express
the dielectric constant of an arbitrary PhC cavity in terms of
the spatial distribution of its fundamental confined mode. To
this end, it is first of all necessary to rewrite Eq. �2� for such
a generic, initially unknown PhC cavity, henceforth labeled
as “X,”

E� X
0 �x,y� =

1
�V

�
kx

0,2�/a

cwkx

0,XE� wkx�x,y�eikxx. �20�

Of course, the conditions for the validity of Eq. �20� are
identical to those holding for Eq. �2�, that is, �i� the recon-
structed mode must have the right parity and �ii� light con-
finement along x must be weaker than that typical of the
modes of an L3 cavity.

The electric field associated with the cavity mode,
E� X

0 �x ,y�, is a solution of the following wave equation:

�� � ��� � E� X
0 �x,y�� = �X

0

c
�2

�X�x,y�E� X
0 �x,y� , �21�

where �X
0 is the frequency of the mode. If we replace

E� X
0 �x ,y� with its expansion in waveguide modes �see Eq.

�20��, we obtain

�
kx

0,2�/a

cwkx

0,X��� � ��� � E� wkx�x,y�eikxx��

= �X
0

c
�2

�X�x,y� �
kx

0,2�/a

cwkx

0,XE� wkx�x,y�eikxx. �22�

Since the waveguide eigenmodes, E� wkx�x ,y�eikxx, are the so-
lutions of the W1 wave equation,

�� � ��� � E� wkx�x,y�eikxx� = �wkx

c
�2

�w�x,y�E� wkx�x,y�eikxx,

�23�

we can rewrite Eq. �22� as

�w�x,y� · �
kx

0,2�/a

cwkx

0,X · ��wkx
�2 · E� wkx�x,y�eikxx

= ��X
0 �2�X�x,y� �

kx

0,2�/a

cwkx

0,XE� wkx�x,y�eikxx. �24�

By taking the absolute value of the y component of both
sides of this vectorial equation, we get

�w�x,y� · � �
kx

0,2�/a

cwkx

0,X · ��wkx
�2 · Ey

wkx�x,y�eikxx�
= ��X

0 �2�X�x,y�� �
kx

0,2�/a

cwkx

0,XEy
wkx�x,y�eikxx� , �25�

provided that we want �X�x ,y� to only take real, positive
values. From Eq. �25�, the following expression of �X�x ,y�
can be easily obtained:

FIG. 4. �Color online� �a�, �c�, �e�, and �g� Spatial distribution
of the Ey component of four modes
��a�-M0, �c�-M4, �e�-M8, �g�-M12� of the L35 cavity. The upper
half shows the modes as obtained from 2DFD computations; in the
lower half, the modes reconstructed using Eqs. �2� and �19� are
displayed. �b�, �d�, �f�, and �h� Integral along y of the Ey component
of the same modes shown in �a�, �c�, �e�, and �g�. The black dots
connected by a black curve refer to the modes obtained from 2DFD
computations; the white squares connected by a gray �red� curve to
the modes obtained using Eqs. �2� and �19�.
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�X�x,y� = �w�x,y� ·

� �
kx

0,2�/a

cwkx

0,X · ��wkx
�2 · Ey

wkx�x,y�eikxx�
��X

0 �2 · � �
kx

0,2�/a

cwkx

0,XEy
wkx�x,y�eikxx� .

�26�

In Eq. �26�, the cwkx

0,X coefficients are obtained via Eq. �19�
while E� wkx�x ,y�eikxx and �wkx

are evaluated by solving Eq.
�23� with the 2DFD method. In the intervals kx
k0 �=0.4�

a
for an r /a of �0.26� and kx�

2�
a −k0, where the odd wave-

guide band is resonant with the upper PhC bands, the W1
eigenmodes are approximated as described in Sec. III while
�wkx

is taken to be equal to �wk0
�see the band sketched as a

continuous line in Fig. 2�c��. The frequency of the X cavity
mode, �X

0 , is treated as a normalization constant, fixed by the
condition �X�0,0�=�GaAs �where �GaAs is the effective di-
electric constant of the GaAs slab at the wavelength of the
cavity mode�.

Even though Eq. �26� provides the necessary link between
�X�x ,y� and the field distribution of the cavity mode, it does
not yet fulfill our goal of designing a realistic PhC cavity
supporting E� X

0 �x ,y�. This is due to the fact that the expres-
sion of �X�x ,y� given in Eq. �26� can take any positive value,
whereas the most convenient way of fabricating a PhC cavity
in a membrane configuration is by etching air holes in the
GaAs slab. As a consequence, it is necessary to find a way to
define an effective dielectric constant, retaining the properties
of �X�x ,y� in spite of only taking two values: 1 �the dielec-
tric constant of air� and �GaAs. A possible way to accomplish
this goal involves the evaluation of the average of �X�x ,y�
over each unit cell of the PhC,33

��X��xi,yi� =
1

a2	
−a/2

a/2 	
−a/2

a/2

�X�x − xi,y − yi�dxdy , �27�

where xi and yi are the coordinates of the center of each PhC
hole in the original waveguide dielectric constant, �w�x ,y�.
In a PhC structure fabricated by drilling holes in GaAs, there
exists a simple relationship between ��X��xi ,yi� and the r /a
of the hole contained in each unit cell,

��X��xi,yi� = �GaAs − ��ri/a�2 · ��GaAs − 1� . �28�

For a generic �X�x ,y� obtained from Eq. �26�, the relation-
ship provided in Eq. �28� allows for defining an equivalent
dielectric constant, whose average in each unit cell is set to
the value of ��X��xi ,yi� by properly tuning the radius �ri� of
the corresponding hole. As we will see in the following, this
is usually sufficient to reproduce the main properties of a
cavity defined through Eq. �26�. In particular, the fundamen-
tal mode supported by the cavity obtained from Eq. �28� is
generally identical to E� X

0 �x ,y�.
It is important to mention, however, that in some in-

stances it is impossible to correctly reproduce ��X��xi ,yi�
through simple adjustments of ri. In these situations, addi-
tional approximations have to be performed. If, for example,
��X��xi ,yi� is larger than �GaAs �the maximum value that can
be taken by the dielectric constant in a GaAs slab�, no hole is

placed in the unit cell; if, on the other hand, ��X��xi ,yi� is
smaller than 1, the unit cell is filled with air. An additional
situation in which no hole is inserted within a given unit cell
occurs whenever the required hole radius is too small to be
fabricated—i.e., when the value of ��X��xi ,yi� is too close to
�GaAs. For the cavity discussed at the end of this section, the
lower limit for ri was set to 30 nm. Of course, any of these
approximations introduces a local discrepancy between the
average dielectric constant of our “realistic” cavity and the
value of ��X��xi ,yi� estimated from Eq. �27�. The effects of
such a discrepancy on the properties of the modes supported
by the cavity can be rather significant, if the unit cells subject
to the approximation are characterized by a high intensity of
the confined electromagnetic field. For this reason, whenever
one of the three situations listed above is verified in any of
the unit cells positioned along the main axis of the cavity �at
y=0�, the local deviation from ��X��xi ,yi� is corrected by
properly adjusting the radius of the neighboring holes.

Now that we have outlined a method to “extract” the geo-
metrical properties of a PhC cavity from the spatial distribu-
tion of its confined modes, we wish to test this approach
through the design of a structure with potentially interesting
properties. As mentioned in Sec. I, in recent years the prob-
lem of the minimization of radiative losses in PhC membrane
cavities has been the object of extensive research.21–23,33–37

When approaching this topic, it is first of all necessary to
remember that PhC membranes exploit two fundamentally
diverse mechanisms to confine photons along different spa-
tial directions. While in the plane of the slab light confine-
ment is indeed provided by the PhC lattice �and can thus be
made arbitrarily strong by increasing the crystal size�, in the
vertical direction one has to completely rely on total internal
reflection �TIR� at the slab-air interface. For this reason, the
k� components of the electromagnetic field that fall into the
so-called light cone—i.e., that do not respect the TIR condi-
tion �
k�
� 2�

�0
, �0 being the photon wavelength in air�—are

free to propagate outside the slab. Since this fact alone ac-
counts for nearly all of the cavity losses, it is not surprising
to discover that virtually every method proposed to achieve
high-Q factors is based on the suppression of the light-cone
components of the fundamental mode of the cavity of
interest.21–23,33–37 To this date, most of these methods have
relied on rather lengthy parameter-space scans, performed by
means of 3D FDTD simulations21–23,34–36 or, in Ref. 37, by
using a conjugate gradient search algorithm. Only in one
case,33 an attempt was made to explicitly derive a semiana-
lytical relationship between the mode distribution and the
dielectric constant of the cavity. However, this was achieved
at the expense of a series of rather severe approximations,
eventually resulting in a dielectric constant-cavity mode re-
lationship that is only defined near y=0 �i.e., along the main
cavity axis�. This is radically different from what we can
achieve with our method, which allows us to accurately map
the dielectric constant of the cavity in the entire x-y plane,
without resorting to any major approximations.

Following the proposal made by Akahane et al. in Ref.
21, we will now try to apply our method to the design of a
PhC membrane cavity supporting a mode with Gaussian en-
velope function. The reasons for studying this particular cav-
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ity mode reside in the peculiar properties of its k�-space dis-
tribution, which can be adjusted to achieve virtually zero
light-cone components �and, thus, ultrahigh Q factors�. Such
a mode can be easily defined by multiplying the PhC W1
eigenmode in kx=� /a—the minimum of the waveguide
band—by a Gaussian function,

E� X
0 �x,y� = E� w,�/a�x,y�ei��/a�x−x2/2x

2
, �29�

where x determines the spatial extent of the confined field.
As displayed in Fig. 5�c�, the 1D Fourier transform of
E� X

0 �x ,y� is composed of a series of Gaussian peaks, centered
at kx= 	� /a+G and with standard deviation kx

= 1
�x

� �
a �. If

the value of x is set to 3a—as was done in the present
work—the light-cone components of the mode become in-
deed negligible �see Fig. 5�d��. In addition, for this value of
x the reconstruction of E� X

0 �x ,y� via Eq. �20� is extremely
accurate, in both real and k� space �see Fig. 5�. As we will see
in the following, such a high accuracy results in the possi-
bility to correctly estimate—through the application of Eqs.
�26� and �28�—the dielectric constant distribution of the X
cavity supporting the Gaussian mode defined in Eq. �29�. In
Fig. 6�a�, we present the X cavity obtained with our method,
superimposed on a false-color mapping of the hole r /a. Even
though it is perhaps difficult to appreciate the hole-to-hole
variations with the naked eye, the hole size varies by more
than 25% throughout the cavity. If rescaled to the value of a
used in this work �a=198 nm�, this variation corresponds to
a spread of �13 nm in the hole radius. This observation
confirms the possibility to fabricate such a structure with
remarkable precision, given that state-of-the-art e−-beam li-

thography systems allow for defining the radius of a PhC
hole with a �1 nm resolution.38,39

By solving the wave equation given in Eq. �21� with the
2DFD method, it is possible to compute the fundamental
mode of the X cavity displayed in Fig. 6�a�, and to compare
its properties to those of the target Gaussian mode. As the
results summarized in Figs. 6�b�–6�e� clearly show, the com-
puted E� X

0 �x ,y� reproduces a Gaussian field distribution re-
markably well. Even the computed mode frequency
�=0.2227c /a� matches the value of �X

0 �=0.2212c /a� ob-
tained from the normalization of Eq. �26� within an error of
less than 1%

However, the final test of the success of our attempt to
recreate an X cavity supporting a mode with Gaussian enve-

FIG. 5. �Color online� �a� Spatial distribution of the Ey compo-
nent of a mode with Gaussian envelope function �=3a�, recon-
structed as described in the main text. �b� Integral along y of the Ey

component shown in �a�. Two Gaussian curves corresponding to
=3a are plotted for comparison as continuous �red and blue� lines.
�c� Comparison between the absolute value of the 1D Fourier Trans-
form �
FT�Ey�x��
kx

� of the ideal Gaussian mode defined by Eq. �29�
�black dots connected by a black curve� and of the reconstructed
mode shown in �a� and �b� �white squares connected by a gray �red�
curve.� �d� 30� zoom of �c� in the light-cone region �shaded in light
gray in the figure�.

FIG. 6. �Color online� �a� False-color mapping of the radius r
�in units of a, see color bar on the right� of the holes forming the X
cavity defined in the main text. The holes are also shown, as circles
of varying radius �proportional to the actual r�. �b� Spatial distribu-
tion of the Ey component of the Gaussian mode supported by the X
cavity presented in �a�. The upper half shows the fundamental mode
of the X cavity, as obtained from 2DFD computations. A mode with
Gaussian envelope function �=3a�—reconstructed using the
method described in the main text—is displayed in the lower half
�same as in Fig. 5�a��. �c� Integral along y of the Ey component of
the same mode shown in �b�. The black dots connected by a black
curve refer to the mode obtained from 2DFD computations; the
white squares connected by a gray �red� curve to the reconstructed
mode with Gaussian envelope function �see main text and Fig.
5�b��. �d� Comparison between the absolute value of the 1D Fourier
Transform �
FT�Ey�x��
kx

� of the ideal Gaussian mode defined by Eq.
�29� �black dots connected by a black curve� and of the fundamental
mode of the X cavity �white squares connected by a gray �red�
curve�. �e� 30� zoom of �d� in the light-cone region �shaded in light
gray in the figure�. �f� Spectrum of the fundamental mode of the X
cavity, obtained from 3D FDTD �gray �red� curve�. The Q factor of
the mode �17.5�106� is indicated. The spectrum of the fundamen-
tal mode of an L11 cavity with nearly identical mode volume �see
main text� is also shown for comparison �black �dark blue� curve,
the mode wavelength was shifted to match that of the X-cavity
mode; only a small portion of the mode peak fits in the displayed
spectral range�.
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lope function and low radiative losses is represented by the
evaluation of the cavity Q factor. This is achieved by per-
forming a 3D FDTD simulation26,40–42 on a membrane with
t=265 nm, embedding the PhC structure shown in Fig. 6�a�.
For the fundamental cavity mode, such a simulation yields a
Q factor of 17.5�106, with a frequency of 0.2209c /a and a
mode volume of 2.3 ��0 /nGaAs�3. The latter value is slightly
smaller than the effective volume of the fundamental mode
of an L11 cavity with similar r /a �=2.35 ��0 /nGaAs�3�, which
by contrast has a Q factor of 1.7�105 �more than 100 times
lower than the one estimated for the X-cavity mode�. We
would like to stress that the ultrahigh Q value obtained for
our X cavity was achieved without resorting to any time-
consuming explorations of the parameter space, nor to other
trial-and-error procedures. Furthermore, our method is not
limited to the design of a specific type of cavity; on the
contrary, it allows for obtaining PhC structures supporting
truly arbitrary field distributions. The only limitation in this
sense is represented by the condition that the target cavity
mode must be sufficiently “shallow” �i.e., delocalized along
x� to be correctly reconstructed with the approach described
in Sec. II. However, this condition hardly affects the gener-
ality of the proposed method, given that the “shallow-to-
deep” defect transition discussed in Sec. III only occurs for
cavities whose effective length is on the order of that of an
L3.

V. CONCLUSIONS

To conclude, we would like to stress that the results pre-
sented in this work have the potential to revert the current
paradigm in the field of PhC cavity engineering, leading to a
shift from a trial-and-error approach to the direct design of
PhC structures supporting arbitrary mode distributions. As
discussed in Sec. IV, this is accomplished through the defi-
nition of a semianalytic relationship between the desired
field distribution and the dielectric constant of the corre-
sponding PhC cavity. In turn, such a relationship can be es-
tablished thanks to the development of a formalism allowing
us to write the optical modes of LN �and LN-like� PhC cavi-
ties as a linear combination of the 1D Bloch eigenstates of
their corresponding �same r /a and membrane thickness� W1
PhC waveguide �see Secs. II and III�. Here, this method is
applied to the design of a PhC cavity whose fundamental
mode presents a Gaussian envelope function and ultralow
cavity losses, as attested by the Q factor of 17.5�106 esti-
mated by 3D FDTD. However, in the immediate future we
plan to extend this approach to the engineering of PhC struc-
tures with more complex mode distributions, including cavi-
ties supporting modes with sinc33 or heaviside43 envelope
functions, systems of coupled cavities,44,45 and coupled
waveguide-cavity systems for on-chip photon generation and
transfer.46 Within this framework, a particularly important
challenge is represented by the design of PhC cavities with
polarization-degenerate modes, which could be employed to
increase the collection efficiency of the entangled-photon
pairs emitted, e.g., by site-controlled, high-symmetry pyra-
midal QDs.47
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APPENDIX: RECONSTRUCTION OF EVEN CAVITY
MODES

When developing our formalism for the reconstruction of
the modes of an LN-like cavity in terms of the Bloch eigen-
modes of its corresponding PhC W1 waveguide, we re-
stricted ourselves to the cavity modes that are odd with re-
spect to reflection about the x-z plane. Given the odd
character of the fundamental mode of line-defect cavities,
this restriction does not have a discernible impact on the
general validity of the method of cavity design introduced in
Sec. IV. However, it is probably interesting to verify the
applicability of our approach to the reconstruction of the
cavity modes stemming from the “even” W1 waveguide
band �see Fig. 1�c��. In the following, we will indeed dem-

FIG. 7. �Color online� �a� Absolute value of WG
�e�wkx �see defi-

nition in the text�. The box delimits the range of values of WG
�e�wkx

�G� �−4· 2�
a ,4 · 2�

a �� that were included in the sum in Eq. �A4�. �b�
Spatial distribution of the Ey component of the lowest-frequency
even mode �M0

�e�� supported by the L11 cavity. The upper half shows
the mode as obtained from 2DFD computations; in the lower half,
the mode reconstructed using Eqs. �2� and �A4� is displayed. �c�
Ey

�e�m,N�x� �see definition in the text�, calculated for the same mode
shown in panel �b�. The black dots connected by a black curve
refers to the mode obtained from 2DFD computations; the white
squares connected by a gray �red� curve to the mode obtained using
Eqs. �2� and �A4�.

SEMIANALYTICAL APPROACH TO THE DESIGN OF… PHYSICAL REVIEW B 82, 115118 �2010�

115118-9



onstrate that the evaluation of the cwkx

m,N coefficients for even
cavity modes can proceed along the same lines discussed in
Sec. II, provided that the obvious differences between cavity
modes of opposite parity are properly taken into account. As
a first step in this direction, it may be useful to rewrite
Eq. �4�,

Ey
m,N�x,y� =

1
�2�

	
0

2�/a

cwkx

m,NEy
wkx�x,y�eikxxdkx. �A1�

For odd cavity modes �see Sec. II�, it was possible to
proceed further by integrating both sides of this equation
along y �see Eqs. �5�–�7��. For the y component of the elec-
tric field of an even PhC mode, however, the result of such
an integral is equal to zero. In order to overcome this diffi-
culty, a possibility is to define the following functions:

Ey
�e�m,N�x� = 	

−�

�

Ey
m,N�x,y�sgn�y�dy �A2�

and

Ey
�e�wkx�x� = 	

−�

�

Ey
wkx�x,y�sgn�y�dy . �A3�

If Ey
m,N�x� and Ey

wkx�x� are replaced with the above given ex-
pressions in the derivation laid out in Sec. II, it is relatively
straightforward to demonstrate that for even cavity modes
the cwkx

m,N coefficients take the form

cwkx

m,N = �
G


FT�Ey
�e�m,N�x��
�kx+G� · �WG

�e�wkx�� �A4�

with

WG
�e�wkx =

1

a
	

−a/2

a/2

���w
�e�1D�x��1/2�� · ��w

�e�1D�x��1/2

· �Ey
�e�wkx�x�� · e−iG·xdx . �A5�

Analogously to the case of odd cavity modes, the effec-
tive 1D dielectric constant, �w

�e�1D�x�, can be obtained by
properly manipulating the 2D wave equations given in Eq.
�10�. For the even modes, we get

�w
�e�1D�x� =

	
−�

�

�w�x,y� · Ey
wkx�x,y�sgn�y�dy

Ey
�e�wkx�x�

+

2
�

�x
�Ex

wkx�x,0�eikxx�

�wkx

c
�2

· Ey
�e�wkx�x�eikxx

. �A6�

The absolute value of WG
�e�wkx �calculated for the same

PhC parameters used in the main text� is shown in panel �a�
of Fig. 7 while the results of the reconstruction of the lowest-
frequency even mode �M0

�e�� of the L11 cavity are summa-
rized in the lower part of the figure. The reconstructed field
distribution of the mode is in very good agreement with the
one computed with the 2DFD method. This confirms the
possibility of treating the even modes of LN-like PhC cavities
within the formalism introduced in Sec. II, further attesting
to the general validity of our approach.
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